skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thonhauser, Timo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The fundamental ideas for a non-local density functional theory—capable of reliably capturing van der Waals interactions—were already conceived in the 1990’s. In 2004, a seminal paper introduced the first practical non-local exchange-correlation functional called vdW-DF, which has become widely successful and laid the foundation for much further research. However, since then, the functional form of vdW-DF has remained unchanged. Several successful modifications paired the original functional with different (local) exchange functionals to improve performance and the successor vdW-DF2 also updated one internal parameter. Bringing together different insights from almost two decades of development and testing, we present the next-generation non-local correlation functional called vdW-DF3, in which we change the functional form while staying true to the original design philosophy. Although many popular functionals show good performance around the binding separation of van der Waals complexes, they often result in significant errors at larger separations. With vdW-DF3, we address this problem by taking advantage of a recently uncovered and largely unconstrained degree of freedom within the vdW-DF framework that can be constrained through empirical input, making our functional semi-empirical. For two different parameterizations, we benchmark vdW-DF3 against a large set of well-studied test cases and compare our results with the most popular functionals, finding good performance in general for a wide array of systems and a significant improvement in accuracy at larger separations. Finally, we discuss the achievable performance within the current vdW-DF framework, the flexibility in functional design offered by vdW-DF3, as well as possible future directions for non-local van der Waals density functional theory. 
    more » « less